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ABSTRACT Music is a multi-layered, sound signal with numerous layers that can be utilized to express
emotions. With the advent of machine learning techniques, Music Emotion Recognition has become one
of the prominent research areas. This paper discusses the design exploration of the hybrid architecture
considering static features, time series features, and image features. The hybrid model is implemented
with parallel combination of CNN, LSTM and Deep Neural Network model. The models were trained
and evaluated using two datasets namely Deam and Mturks. The result of the proposed architecture has
shown improvement over the existing architecture in terms of accuracy metrics and learning capabilities. We
successfully implemented a pipeline that clips audio files to a suitable length and extracts relevant features
so that emotion(s) in the composition can be recognized by the system. When added to the recommendation
pipeline, the system can provide better music recommendations based on the user’s mood and can help
improve the clustering of music based on emotions.

INDEX TERMS Music emotion classification, music emotion estimation, Music information retrieval,
Machine learning.

I. INTRODUCTION

MUSIC is considered a complex combination of sounds.
Through music, human emotions can be expressed

effectively. Music has become an essential part of human
social life, catering to all age spans. Music can be categorized
in a variety of ways, such as by genre, artist, emotion, and
other factors. Organizing music by emotion, on the other
hand, is a useful strategy for allowing listeners to hear similar
types of music at the same time. In recent years, the rapid
rise of digital music data on the internet has resulted in a
surge of consumer demand for search based on various types
of meta-data. Modern music streaming has only raised the
desire for music classification based on factors other than
genre, such as sentiment. In such cases, Music Emotion
Recognition (MER) can assist us in classifying music based
on the emotion present at a specific point in the composition.
The method entails extracting instrumental sections of the
music, retrieving relevant attributes, and storing them in a
machine-learning-friendly format for the model to use while

running the prediction algorithm.
Present-day work in the field of MER includes recognizing

temporal variation, and dominant feature selection methods
which influence the listener in their perception of the emo-
tions. Music is represented in multiple domains such as time,
frequency, wavelet, etc. One of the forms to represent emo-
tion in music is Valence - Arousal space. The Arousal values
represent emotions ranging from calm(low) to excited(high).
Valence, on the other hand, is the level of pleasantness that an
event generates and is defined along a continuum from neg-
ative to positive. Valence-Arousal values can be represented
in a two-dimensional space using Russell’s two-dimensional
Valence-Arousal space [1] where emotions are represented
by points in the plane.

KR Tan et. al. [2] used Support Vector Machine(SVM)
and Naïve Bayes algorithms to classify music emotion using
Russell’s two-dimensional valence-arousal space. SVM was
used for audio features and Naïve Bayes for lyrical features.
For the SVM - valence classifier, the model gave an F1 metric
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(in %) of 57 on a testing set of 26 songs. From the works,
a conclusion was drawn that SVM arousal and NB valence
models performed well and gave higher accuracies.

JM Brotzer et. al. [3] implemented a feed-forward neural
network architecture to predict arousal and valence values
on the Deam dataset. Audio features include MFCC, Chro-
magram of STFT, Mel-based Power Spectrogram, Octave-
based Spectral Contrast, and Tonnetz, including another set
of features extracted from essentia. The author concluded the
experiment by stating recurrent neural networks would be
beneficial for music emotion recognition.

In [4], a CNN-BiLSTM architecture was implemented to
classify emotions in the dataset. The CNN pipeline consisted
of two models with a feature combination of Mel spec-
trogram and cochleogram. Outputs of both the models are
concatenated and fed into biLSTM model with arousal and
valence as output. RMSE of 0.07 +- 0.05 for Arousal and
0.06 +- 0.04 for Valence was obtained as a result.

Richard Orjese et. al. [5] proposes a CNN-RNN architec-
ture for music emotion recognition. The valence and arousal
vary between -1 to 1 and the dataset consisted of 431 songs
of 45 seconds each. An average RMSE of 0.217 +- 0.003 was
obtained for the proposed model.

A regression approach is proposed in [6], which aims to
categorize the emotion based on the dominant emotion in a
music clip. The dataset consisted of 385 songs of 30-second
each. Support Vector Regression (SVR) was used as the
regression algorithm which predicted the two most dominant
emotions in the music clip. The model gave the best accuracy
of 84.5% on the exciting class of emotion while the accuracy
for sad/calm emotion went as low as 47.6%.

The approaches mentioned in the previous research either
use feed-forward networks or CNN methods for the classifi-
cation problem, disregarding time series and static informa-
tion or having a limited data set. We implemented a hybrid
architecture to take into consideration the static features, time
series features, and image features for the larger datasets.

II. METHODOLOGY
A. DATASET
The models were trained and evaluated using two datasets:
Deam [7] and Mturks [8]. Deam dataset consists of 1802
45-second songs, whereas Mturks is made up of 1000 45-
second songs. The datasets consist of valence and arousal
values for each audio file. These values were then mapped
to quadrants based on Russell’s 2-D matrix for valence and
arousal - (+VA, +AR) lies in quadrant 1, (+VA, -AR) lies in
quadrant 2, (-VA, -AR) lies in quadrant 3, and (-VA, +AR)
lies in quadrant 4. Each clip was then divided into 8 segments,
each lasting 5 seconds. The last segment was discarded in
order to maintain uniformity across all songs, owing to a
disparity in the duration of the final clip of the songs across
the datasets.

The segments were later filtered on the basis of the thresh-
old technique where the clips having valence and arousal
data points below a certain threshold (0.025) were filtered

TABLE 1. Data points across all classes.

Quadrant Deam MTurks
Train Test Validation Train Test Validation

Q1 5221 1477 582 1573 454 194
Q2 4238 1194 496 1396 380 153
Q3 4983 1302 506 1562 423 166
Q4 4081 1173 475 1290 360 134

FIGURE 1. Valence – Arousal plot for Deam dataset.

FIGURE 2. Valence – Arousal plot for MoodSwings Turk dataset.

out. This eliminates the ambiguity in segments that lie very
close to the axes. In order to reduce the imbalance between
the emotion classes, the classes for quadrants 2, 3 and 4
were over-sampled to match the count of quadrant 1 (the
highest number of samples). This process yields us a total
of 25718 segments in the Deam dataset and 8043 segments
in Mturks dataset. A split of 70, 10, and 10 was done for
training, testing, and validation respectively using scikit learn
[9]. Figures 1 and 2 show scatterplots for Deam and Mturks
datasets respectively, and Table 1 outlines the data points
across all the emotion classes for Deam and Mturks datasets.
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TABLE 2. Features used and their shapes

Feature Vector
Shape Description

Amplitude
Envelope (216, 1) Change in the amplitude

of a sound wave over time

Root Mean
Square Energy (216, 1)

Represents the intensity
of an audio clip.Higher

the RMS energy, the higher
in tempo musical composition

tends to be

Zero Crossing
Rate (216, 1)

The rate at which audio signal
changes from positive to

negative or vice versa
Spectral
Centroid (216, 1) The centre of mass of the

spectrum of audio signal
Spectral
Spread (216, 1) Deviation around the centroid

of the audio signal

MFCC (13, 216, 1)
Representation of non-linear
function of sound perception

by the human ear
Delta

MFCC (13, 216, 1) First order derivative of MFCC

Delta 2
MFCC (13, 216, 1) Second order derivative of MFCC

Static
features (10, 1)

Collation of mean and standard deviation
of amplitude envelope, root mean
squared energy, zero crossing rate,
spectral centroid, spectral spread

B. FEATURES
The feature vector used for training the models is extracted
and stored using LibROSA [10] and Pandas [11] respec-
tively. and is a collation of temporal and spectral fea-
tures. Temporal features include Amplitude Envelope(AE),
Root Mean Squared Energy(RMSE), and Zero Crossing
Rate(ZCR) while the spectral features consist of spectral
centroid, spectral spread along with Mel Frequency Cepstral
Coefficients (MFCC), Delta MFCC(a first-order derivative
of MFCC), and Delta2 MFCC(second order derivative of
MFCC). Additional derived static features have been gen-
erated by calculation of mean and standard deviation of
amplitude envelope, root mean squared energy, zero crossing
rate, spectral centroid, and spectral spread, giving a vector
size of (10,1). Table 2 highlights the various vector sizes of
input features. Training on these features has been done on
Tensorflow [12].

C. MODELS
1) Convolutional Neural Network Model (Model 1)
A 3-layer, 3-channel convolutional neural network model
was built for MER. The inputs consist of MFCC, Delta
MFCC and Delta2 MFCC. The features were horizontally
stacked with a shape of (13,216) where each MFCC was
13*216. The output layer consisted of 4 neurons and ReLU
activation was used in the hidden layers and softmax was
used in the output layer. Also, Adam optimizer was used
for this model with a learning rate of 0.0001. The loss
function chosen was the cross-entropy loss function or log
loss function as shown in equation 1, where ti is the true label
and pi is the softmax probability of ith class of the 4 classes.

FIGURE 3. Model 1 Architecture.

FIGURE 4. Model 2 Architecture.

The overall architecture is shown in figure 3.

LCE = −
4∑

i=1

(tilog(pi)) (1)

2) CNN-LSTM Model (Model 2)

The model consists of CNN and LSTM models running in
parallel. The CNN model is trained on MFCC and Delta
MFCC of 5-second sub-segments of songs. The input shape
of two-channel training data is (13,216,2). The first 13 MFCC
coefficients were selected for this task. The CNN architecture
consists of 3 convolutional layers with max-pooling in hidden
layers.

The LSTM model is fed with other time series features
extracted – amplitude envelope, zero crossing, rmse, spectral
centroid, and spectral spread. The model consisted of 2
LSTM layers and similar hyper-parameters were chosen for
the model. The outputs of both the models were concatenated
and fed into a 3-layer neural network with 1 hidden layer.
Softmax activation was used in the output layer with 4
neurons. The architecture is shown in figure 4.
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FIGURE 5. Model 3 Architecture.

3) CNN-LSTM Model with Static Features (Model 3)
To accommodate the static features of the music clip, a
Deep Neural Network(DNN) layer was added to the previous
CNN-LSTM model. Static feature is stacked with the outputs
of CNN and LSTM to form a combined input to feed-
forward neural network. Figure 7 shows the architecture of
the described model. The model consists of CNN, LSTM and
DNN layers. Visual representation of the first 13 coefficients
of MFCC with size 13*216*1 was fed to CNN layers. The ex-
tracted Root Mean Square Energy (RMSE) and Zero Cross-
ing Rate (ZCR) of each song were fed to the LSTM layer and
static features such as standard deviation and mean of RMSE,
ZCR, spectral centroid, spectral spread, amplitude envelope
were given as the input for DNN layer. Zero crossing and
RMSE were chosen for the LSTM model as they provide the
amplitude and tempo of the song. The internal architecture
for LSTM and CNN models was the same as model 2. The
outputs of both the models were concatenated with the output
of the DNN model which was further fed into a 3-layer neural
network with 1 hidden layer. Softmax activation was used in
the output layer with 4 neurons. Figure 5 shows the entire
architecture of model 3.

III. RESULT ANALYSIS
Table 3 highlights the performance of each model on both
datasets. An accuracy delta of 4% was observed between
model 1 and model 2 when considering the performance on
the Deam dataset. Model 3 generated improved results when
compared to model 2 with a 3% improvement in both Deam
and MTurks datasets in terms of accuracy.

There is a significant improvement in accuracy and F1

FIGURE 6. Training - Validation plot for Deam dataset.

FIGURE 7. Training - Validation plot for Mturks dataset.

scores for models 2 and 3 as compared to model 1. Accuracy
higher than 87% was achieved for testing and validation
sets. This confirms that time-series data provided additional
information and features which helped the model to improve
its accuracy.

As seen from figure 6 and figure 7, the model taking the
image, time series, and static features into account outper-
form model 2 by 3%, and model 1 by 10% on the Mturks
dataset. These results confirm the initial hypothesis of the
requirement of various images, time series, and static features
for giving a better prediction. Figure 8 and figure 9 show the
confusion matrix for model 3 on the Mturks dataset and the
Deam dataset respectively. Based on the data, quadrant 1 had
the most ambiguous values with 363 misclassifications for
the Deam dataset.

TABLE 3. Performance summary for all the models.

Model 1 Model 2 Model 3
Deam Mturks Deam Mturks Deam Mturks

Test
Accuracy (%) 82 81 86 84 89 87

F1
Score

Q1 0.79 0.81 0.82 0.80 0.83 0.83
Q2 0.88 0.87 0.90 0.88 0.91 0.89
Q3 0.89 0.81 0.90 0.86 0.92 0.89
Q4 0.88 0.84 0.90 0.84 0.92 0.85
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FIGURE 8. Confusion Matrix for Model 3 - Mturks Dataset

FIGURE 9. Confusion Matrix for Model 3 - Deam Dataset

IV. CONCLUSION AND FUTURE SCOPE OF WORK
MER is a part of Music Information Retrieval (MIR) which
aims to determine the emotional characteristics of the music
by applying machine learning and signal processing tech-
niques. MER systems enable us to better music discoverabil-
ity across streaming services. The results highlight that the
image data itself was not enough to recognize the patterns
and distinguish the emotions properly. Since music is a
time series data, we added features involving time series
information such as zero-crossing rate to identify the tempo,
and amplitude envelope to identify the energy of each frame.
To accommodate these time-series data, LSTM layers were
added in parallel to the CNN layers to process both the image
and time-series data. Our work proposed an architecture to
allow static, time-series, and image data to be processed
simultaneously. The result of the proposed architecture has
shown improvement over the existing architecture in terms
of accuracy metrics and learning capabilities. When added
to the recommendation pipeline, can provide better music
recommendations based on the user’s mood and can help
improve the clustering of music based on emotions.

Although our work has shown improvement over other

traditional models and algorithms, there are certain improve-
ments that can be considered in the future scope of the
project. The inclusion of metadata and textual features such
as lyrics can be beneficial for determining emotion. Using
natural language processing techniques on the metadata, a
rough estimation of mood can be determined. Additional data
such as genre and artist might provide useful information and
improve the efficiency and accuracy of the model.
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